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Transport of reactive tracers in rock fractures
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Transport of tracers subject to mass transfer reactions in single rock fractures is
investigated. A Lagrangian probabilistic model is developed where the mass transfer
reactions are diffusion into the rock matrix and subsequent sorption in the matrix, and
sorption on the fracture surface as well as on gauge (infill) material in the fracture.
Sorption reactions are assumed to be linear, and in the general case kinetically
controlled. The two main simplifying assumptions are that diffusion in the rock matrix
is one-dimensional, perpendicular to the fracture plane, and the tracer is displaced
within the fracture plane by advection only. The key feature of the proposed model is
that advective transport and diffusive mass transfer are related in a dynamic manner
through the flow equation. We have identified two Lagrangian random variables τ
and β as key parameteres which control advection and diffusive mass transfer, and
are determined by the flow field. The probabilistic solution of the transport problem
is based on the statistics of (τ, β), which we evaluated analytically using first-order
expansions, and numerically using Monte Carlo simulations. To study (τ, β)-statistics,
we assumed the ‘cubic law’ to be applicable locally, whereby the pressure field is
described with the Reynolds lubrication equation. We found a strong correlation
between τ and β which suggests a deterministic relationship β ∼ τ3/2; the exponent
3/2 is an artifact of the ‘cubic law’. It is shown that flow dynamics in fractures has
a strong influence on the variability of τ and β, but a comparatively small impact
on the relationship between τ and β. The probability distribution for the (decaying)
tracer mass recovery is dispersed in the parameter space due to fracture aperture
variability.

1. Introduction
Deep geological formations, in particular those consisting of crystalline rocks, are

generally considered as stable environments suitable for disposal of highly toxic and
radioactive wastes. The efficiency of geological media in preventing the spreading of
radionuclides from failed canisters to the biosphere depends to a large extent on the
mass transfer/retention processes (diffusion and sorption). Most of the radionuclides
of interest are sorptive. For the concentrations in question, the capacity of the rock
mass for sorption is essentially infinite. However, radionuclides first have to diffuse
into the rock in order to access the extensive pool of sorption sites in the rock matrix
(Neretnieks 1980). Diffusion in turn depends on the advective transport paths through
fractured rock, emphasizing the coupling between flow, advective transport and mass
transfer reactions.

Fluid flow and tracer transport in fractured rock take place along distinct conduc-
tive features which essentially coincide with fractures. Based on available experimental
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data, a fracture in crystalline rock is percieved as a void bounded by two macro-
scopically planar surfaces that are microscopically (locally) irregular. The opening of
the fracture (aperture) varies from point to point in the fracture plane, resulting in
two-dimensional heterogeneous flow fields. Tracers injected in fractures of a fluid-
saturated rock are advected and dispersed, and are subject to various mass transfer
reactions. In particular, the tracers diffuse into the rock matrix and (if reactive)
sorb on internal surfaces of the rock. Fractures of crystalline rocks may be filled
more or less with gauge (infill) material which further enhances sorption and hence
retention.

Various models have been used for describing fluid flow and tracer transport in
rock fractures. The basic model for fracture flow is the parallel plate model with
laminar (Poiseuille) flow where fluid discharge is proportional to the aperture cubed
(‘cubic law’). In the simplest form, the entire fracture is percieved as a parallel plate
with spatially uniform properties (Snow 1965). Then next level of complexity is to
conceptualize flow in fractures as ‘channelling’ where the parallel plate model is
applicable along each channel, but the fracture aperture (or fluid velocity) of each
channel varies randomly (e.g. Neuzil & Tracy 1981; Neretnieks 1983); the channel
model has been used for interpreting results from tracer experiments both in the
laboratory (e.g. Moreno, Neretnieks & Eriksen 1985) and in the field (e.g. Neretnieks,
Eriksen & Tähtinen 1982). A further level of complexity is to assume the parallel plate
model and the cubic law applicable locally, where the fracture aperture is a random
space function (RSF) (e.g. Moreno et al. 1988; Tsang & Tsang 1989). Simulations of
flow and advective transport with variable aperture (e.g. Moreno et al. 1988; Tsang
& Tsang 1989) have provided important insights into the channelling phenomena,
demonstrating the formation of ‘preferential’ flow paths (channels) as an artifact of
the dynamics of flow in strongly varying aperture fields.

Transport in fractures of tracers subject to mass transfer (matrix diffusion and
sorption) has been studied in the past using analytical models with a simplified flow
configuration (e.g. Neretnieks et al. 1982; Neretnieks 1983; Moreno et al. 1985; Wels,
Smith & Vandergraaf 1994); these models did not explicitly account for the effect of
spatial variability in fracture aperture on tracer mass transfer. Similarly, analytical
models that account for flow heterogeneity when solving advective transport, do not
account for the effect of aperture variability on matrix diffusion (Cvetkovic 1991).
The impact of aperture variability on tracer mass transfer (diffusion and sorption) has
been accounted for in numerical particle-tracking simulations; however, the dynamics
of the flow was not explicitly accounted for (e.g. Moreno & Neretnieks 1993). In spite
of various simplifications and limitations, results on flow and reactive transport in
fractures obtained in the past clearly demonstrate the significance of heterogeneity
for both advective transport and mass transfer processes.

In this paper, we investigate solute transport in single rock fractures, where we
consider two key mechanisms: advection (i.e. tracer bulk movement along random
flow paths) and mass transfer reactions (diffusion into the matrix and rate-limited
sorption). The Lagrangian framework for transport in aquifers (Cvetkovic & Dagan
1994, 1996; Dagan & Cvetkovic 1996; Cvetkovic, Dagan & Cheng 1998) is in this
work extended to single rock fractures. We provide analytical probabilistic solutions
where for the first time diffusive mass transfer is related to the dynamics of the flow;
the flow field and mass transfer processes are both subject to (strongly) correlated
statistical variations due to variations in the fracture aperture. An illustration example
emphasizes the effect of aperture heterogeneity on the tracer residence time in the
fracture–rock matrix system.
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Figure 1. Configuration sketch of a tracer particle trajectory in a single fracture originating from
(ax = 0, ay); an elementary area dx × dy in the fracture with the surrounding rock matrix is also
shown.

2. Governing equations and assumptions
Conductive features in crystalline rock are conceptualized as essentially two-

dimensional voids (fractures) bounded by irregular, planar in the mean, surfaces
of the rock (figure 1). The rock, as well as rock fractures, are assumed saturated
with water which moves mainly through the fractures. The opening between the two
surfaces (aperture) determines the rate of water flow in a fracture, for a given pressure
gradient. Let 2b(x) be the aperture at a given location in the fracture plane x(x, y)
(figure 1), where b is the half-aperture and is assumed to be a random space function
(RSF). The fracture may contain some infill (gauge) material that in general will not
influence fluid flow but can influence mass transfer reactions by enhancing sorption.

A reactive tracer injected at a specified location in the fracture is advected along
random flow paths by the fluid flow and dispersed, e.g. due to small-scale velocity
variations and/or diffusion, into adjacent streamlines in the fracture plane. In addition,
the tracer is generally subject to various mass transfer processes both in the fracture
and in the rock matrix.
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The governing transport equation can be written in a compact form as

∂C
∂t

+ ∇ ·J−S = 0 (1)

where C is the vector of mobile and immobile concentrations in the fracture/rock
matrix system, J is the tracer mass flux vector, and S is the vector of sink/source
terms. S in general depends on C, and a set of parameters that may all be RSFs.
The quantities C and J are functions of the three-dimensional position x(x, y, z) and
time t.

In this analysis we consider mass transfer reactions for which the vectors C, J and
S are defined by

C ≡
 C
Cm
C ′
C ′m

 , J ≡
 J
Jm
0
0

 , S ≡
 ψ
ψm
ψ′
ψ′m

 , (2)

where C [ML−3] is the concentration, J [ML−2T−1] is the tracer mass flux, and ψ
[ML−3T−1] is the source (sink) term; quantities without the index m pertain to the
fracture, and quantities with the index m to the rock matrix; quantities without primes
pertain to the mobile tracer whereas those with primes pertain to the immobilized
tracer, for which by definition the mass flux is zero.

The following mass transfer reactions are to be considered in this study: diffusion
into the rock matrix, sorption in the matrix, sorption on the fracture surfaces, sorption
onto gauge material; in addition, the tracers of interest are generally subject to decay
and/or possibly irreversible sorption. In order to formulate and solve the transport
problem using (1)–(2), we need to specify the mass flux and the sink/source terms,
consistent with the mass transfer processes of interest. To specify Jm and the source
terms, we adopt the following assumptions:

(i) All mass transfer reactions are linear.
(ii) The movement of tracers in the rock matrix is assumed to be due to molecular

diffusion only, i.e. advection in the matrix is neglected; hence Jm is a diffusive flux.
(iii) Jm(0, 0, Jmz), i.e. diffusion is one-dimensional from the fracture into the rock

matrix, where transverse fluxes (i.e. diffusive fluxes parallel to the fracture plane) are
neglected (figure 1).

(iv) The mass flux in the fracture is due to advection only.
(v) Fully mixed conditions prevail in the fracture, in the direction orthogonal to

the fracture plane (figure 1); hence C and C ′ are functions of the position in the
fracture plane, x(x, y) (figure 1), and time.

The above assumptions provide the basis for transport models that have been used
in the past (e.g. Neretnieks et al. 1982; Neretnieks 1983; Moreno et al. 1985; Cvetkovic
1991; Wels et al. 1994). Based on assumptions (i)–(v), transport models of different
complexity may be formulated, depending on how fluid flow and the advective mass
flux in the fracture are related to mass transfer reactions. Common to all models in
the current literature is that the source term ψ in the fracture does not account for
the dynamics of the fluid flow. The important issue to be addressed here then is one
of relating the tracer mass flux in the fracture, J , to the source term in the fracture,
ψ, in a dynamic manner, i.e. through the flow equation.
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The sink/source terms in (1) based on assumptions (i)–(v) are defined as follows:

ψ ≡ − θ

b(x)
Jmz(x, z, t) |z=0 −λC − αf [Kf

d (x)C − C ′],

ψ′ ≡ αf [Kf
d (x)C − C ′]− λC ′,

ψm ≡ −αm(Km
d Cm − C ′m)− λCm,

ψ′m ≡ αm(Km
d Cm − C ′m)− λC ′m,


(3)

with

Jmz(x, z, t) = −D ∂Cm

∂z
. (4)

In (3)–(4), θ [-] is the porosity of the rock matrix, D [L2T−1] is pore diffusivity in the
rock matrix (Dθ being the effective diffusivity, Kf

d [-] and Km
d [-] are dimensionless

distribution coefficients for reversible sorption in the fracture and matrix, respectively,
λ [T−1] is the rate of decay, αf [T−1] is the rate coefficient for reversible sorption in
the fracture, e.g. on the fracture surface and/or in gauge material, and αm [T−1] is
the rate coefficient for reversible sorption in the rock matrix.

The first term in the definition of ψ in (3) is the rate of diffusive mass transfer
from the fracture into the rock matrix. The last term of ψ in (3) accounts for first-
order reversible sorption–desorption in the fracture, and the corresponding term in
the definition of ψm for first-order reversible sorption–desorption in the rock matrix.
Note that (3)–(4) implies symmetry in the diffusion process in the z-direction.

The most important generalization in (3)–(4) compared to the models used in the
past (e.g. Neretnieks et al. 1982; Neretnieks 1983; Moreno et al. 1985; Wels et al.
1994) is that the advective tracer flux J and the source term in the fracture, ψ,
are related in a dynamic manner through the two-dimensional flow equation (A 1)
(Appendix A).

For a given realization of the RSF b(x), the two-dimensional fluid velocity V (Vx, Vy)
is computed from the pressure field which is obtained from the Reynolds lubrication
equation (A 1) (Appendix A), with specified steady-state boundary conditions. Hence,
we assume the ’cubic law’ to be applicable locally over an element dx× dy (figure 1).
The tracer mass flux for pure advection in the fracture (assumption (iv)) is defined by

J (x, t) = C(x, t)V (x). (5)

Even for a chemically inert tracer with K
f
d = Km

d = 0, diffusion into the matrix
as well as decay may take place; thus in the present context, ‘reactive’ is used in a
general sense designating chemical and/or physical interactions with the rock matrix
or fracture surface, including decay. ‘Non-reactive’ tracer thus implies an idealized
tracer, or marked fluid, subject to advection only.

The parameters Km
d and αm in (3) reflect uniform sorption properties of the rock

matrix. The parameters Kf
d and αf reflect sorption properties of the infill (gauge)

material and/or of the fracture surface. These are generally subject to random
variations, say due to variations in the density of gauge material, or the variations in
the aperture. Field data on the sorption rate αf are limited; at most, one can obtain
a rough estimate of its effective (mean) value. Moreover, recent studies of reactive
transport in aquifers show that the impact of spatial variability of the rate coefficient
corresponding to αf is limited; the most significant are the mean values (e.g. Cvetkovic
et al. 1998). Thus, we consider αf in (3) to be spatially uniform.
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Our specific goal here is to develop deterministic and probabilistic solutions of the
equation system (1)–(2) with (3)–(5), for specified initial and boundary conditions. In
the next Section, we derive Lagrangian transport equations. In § 4 a general solution
to the Lagrangian transport problem is derived in the Laplace domain for a pulse
input, and limiting cases are presented in Laplace and real domains. Probabilistic
solutions are given in § 5 and § 6 and illustrated in § 7.

3. Lagrangian transport formulation
In order to solve the reactive transport problem in a fracture, we shall transform the

Eulerian transport equations (1)–(2) using Lagrangian coordinates; the methodology
to be used here is the one developed by Cvetkovic & Dagan (1994).

A conservative (non-reactive) and dynamically inert tracer injected at a(0, ay) (fig-
ure 1) is advected as an indivisible entity; we refer to it as a tracer parcel, or particle.
The parcel advection trajectory is X (t; a) [Xx(t; a), Xy(t; a)], with X (0; a) = a, where
X is obtained by solving dX (t; a)/dt = V [X (t; a)] (Taylor 1921; Dagan 1984).

A useful parametrization of Lagrangian variables is in terms of x, i.e. the position
parallel to the mean flow. The solution of x−X(t; a) = 0 yields t = τ(x; a) where τ = 0
for ax = 0. Hence τ is the advective travel time from ax(= 0) to x. If x−X(t; a) = 0 has
multiple roots, we select the first passage time. Next we define η(x; a) = Xy(τ; a) where
y = η pertains to the trajectory. The Lagrangian quantities τ and η satisfy differential
equations dτ/dx = 1/Vx(x, η) and dη/dx = Vy(x, η)/Vx(x, η) with η(0; a) = ay .

With the transformation ξ ≡ y − η, C(x, t) in (1)–(2) become Lagrangian variables
C(t, τ; ay); for simplicity, we retain the same notation for Eulerian and Lagrangian
quantities. Transforming all quantities in (1)–(2) and (3)–(5) yields a Lagrangian mass
balance equation system which pertains to a trajectory originating from a:

∂C

∂t
+
∂C

∂τ
=
θ D

b(τ)

∂Cm

∂z

∣∣∣∣
z=0

− λC − αf [Kf
d (τ)C − C ′],

∂Cm

∂t
= D

∂2Cm

∂z2
− αm (Km

d Cm − C ′m)− λCm,
∂C ′

∂t
= αf [Kf

d (τ)C − C ′]− λC ′,
∂C ′m
∂t

= αm (Km
d Cm − C ′m)− λC ′m.


(6)

The advective residence time τ(x; a) can be written in an integral form as

τ(x; a) =

∫ x

ax=0

dx′

Vx[x′, η(x′; a)]
. (7)

The boundary conditions are prescribed as

C = Cm at z = 0,

Cm = 0 or
∂Cm

∂z
= 0 at z = ζ,

C(t, 0) = C0(t) at x = 0 or τ = 0,

 (8)

where we consider two types of boundary conditions for Cm: zero concentration
(Cm = 0), and zero flux (∂Cm/∂z = 0). Zero initial condition is assumed for all
concentrations.
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An example of a physical situation for which the zero flux boundary condition
(∂Cm/∂z = 0) would be appropriate is a system of three fractures in which tracer
transport occurs simultaneously in all three and we model the transport in the middle
fracture; ζ is then half the distance from the middle fracture to either one of the
other two fractures. The zero concentration boundary condition (Cm = 0) would be
appropriate in the same situation of three fractures, provided that tracer transport
occurs solely in the middle fracture. Then the other two fractures act as sinks for the
tracer, once the tracer has diffused to ζ which here is the distance between fractures.
The latter situation is more likely to occur in reality, where the lenght ζ is a known
(linear) function of distance. For simplicity, we assume the three fractures to be
parallel, hence ζ is uniform.

Most common injection and detection modes in applications are given in terms of
the tracer mass flux [ML−2T−1], or the tracer discharge [MT−1]. The transport is
then described as the tracer breakthrough (i.e. mass flux or discharge) at a control
plane at x, orthogonal to the mean flow (figure 1).

Let q [MT−1] denote tracer discharge at the location x. Then q = CV1∆A = Jx ∆A,
where ∆A is the infinitesimal cross-sectional area in the control plane (y, z) at x
over which the tracer is discharged (figure 1). Since the mass transfer processes
considered are linear, the basic solution of the transport problem is obtained for a
pulse (instantaneous) injection, i.e. C(t, 0) = (C0∆t0) δ(t), where ∆t0 is the infinitesimal
time interval of injection, C0 is the tracer concentration of the injected solution, and
δ is the Dirac delta function. If the injected solution volume is ∆V, the total injected
mass is ∆M = C0 ∆V. The solution for the tracer concentration, C , and tracer
discharge, q, is then (Cvetkovic & Dagan 1994)

C(t, τ) = C0∆t0 γ(t, τ), q(t, τ) = ∆M γ(t, τ). (9)

With ∆M given, the focus of our analysis is on the function γ [T−1]. For tracer
injection over finite time intervals with a given rate function, the solution for q is
obtained by convolution.

4. Solution for a single flow path
The solution of the system (6) with boundary conditions (8) and for zero flux (i.e.

∂Cm/∂z = 0) at z = ζ, is obtained in the Laplace domain as (Appendix B)

q̂/∆M ≡ γ̂ = exp

[
−τs′ − β θ(DGm(s′))1/2 A(s′)− s′

s′/αf + 1

∫ τ

0

K
f
d (ε) dε

]
, (10)

where

Gm(s) ≡ s
(

1 +
Km
d

s/αm + 1

)
, A(s) ≡ exp

[
2 ζ (D−1 Gm)1/2

]− 1

exp
[
2 ζ (D−1 Gm)1/2

]
+ 1

, s′ ≡ s+ λ, (11)

and

β(τ) =

∫ τ

0

dτ′

b(τ′)
. (12)

Gm accounts for the kinetic sorption in the rock matrix, A accounts for the effect of
a limited diffusion zone on matrix diffusion, and the last term in the exponential (10)
accounts for the kinetic sorption in the fracture; note that sorption in the rock matrix
takes place only after the tracer has diffused into it from the fracture. The solution
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for the zero concentration boundary condition (i.e. Cm = 0) at z = ζ is identical to
(10), except that the function A is replaced by A−1 (Appendix B).

Surface sorption is typical for fractures in crystalline rocks. Kf
d ∼ 1/b is a common

assumption (e.g. Moreno et al. 1985), and we can write K
f
d (x) = Ka/b(x), where

Ka [L] is a spatially uniform distribution coefficient for reversible surface sorption
(once equilibrium is reached). Note that in some cases Kf

d (x) = Ka/b(x) with Ka

uniform may not be applicable (Wels et al. 1994); we may then consider Kf
d as a RSF

correlated to b, or use an alternative functional form between Kf
d and b. Furthermore,

for many applications ζ may be considered as sufficiently large such that the influence
of the boundary at ζ is small; thus we shall simplfy the solution by assuming ζ →∞.

With Kf
d (τ) = Ka/b(τ), and ζ →∞ (whereby A→ 1), the solution (10) becomes:

γ̂ = exp
[−τs′ − β θ(DGm(s′))1/2 − βGf(s′)] , (13)

where

Gf(s) ≡ s
(

Ka

s/αf + 1

)
. (14)

Using dτ = dx/Vx and τ = τ(x), we can write β (12) as

β(x) =

∫ x

ax=0

dx′

Vx[x′, η(x′)] b[x′, η(x′)]
. (15)

The parameters Km
d ,Ka, D, θ, αm, αf in (13) can in principle be determined in the

laboratory from rock samples. β (12) is a new Lagrangian quantity that controls mass
transfer along a flow path (streamtube) and depends on the flow field. Equation (12)
establishes a nonlinear relationship between τ and β, which for a given realization
of the RSF b(x) can be solved numerically (see § 6.3). The quantities τ and β are
(correlated) random variables, due to the randomness of V (x), i.e. of the aperture
2b(x). Note that for a given RSF b(x), and given parameters Km

d ,Ka, D, θ, αm, αf ,
diffusion can be influenced only by changing the boundary condition for the flow. If
the fracture is approximated as uniform with b = const., then β (15) can be expressed
as the ratio of the surface area of a uniform ‘channel’ through which transport takes
place, and the volumetric flow rate of the ‘channel’; hence reference to β for uniform
fractures as ‘flow-wetted surface’ (Moreno & Neretnieks 1993) or ‘specific surface
area’ (Wels et al. 1994).

The function γ(t, τ) that is obtained by inverting (10) or (13), and is suitably
normalized if λ 6= 0, may be interpreted as a probability density function of subparticle
residence time, ϑ. The concept of ‘subparticles’ has been used recently for describing
non-reactive transport by groundwater (Dagan & Fiori 1997). The tracer parcel (or
particle) injected at a location x = a can be viewed as consisting of many indivisible
‘subparticles’ (e.g. molecules). In the absence of mass transfer processes, the tracer
parcel is advected as an indivisible entity. Due to mass transfer reactions, however,
the tracer parcel is ‘deformed,’ or dispersed, whereby the subparticles diffuse into the
rock matrix, are sorbed in the fracture and in the rock matrix, and in addition can
‘disappear’ due to decay and/or irreversible sorption. For given advection (i.e. fixed
τ), normalized γ(t, τ) quantifies the probability that a subparticle will cross the control
plane at x within the time interval dt at time ϑ = t. The subparticles are retarded by
mass transfer processes, relative to the advective movement of the tracer parcel; in
the absence of mass transfer, γ = δ(t− τ), and all subparticles arrive at x and y = η
at ϑ = t = τ with probability 1.

Several limiting cases of interest for applications can be obtained from (13). The
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simplest case is when all mass transfer reactions are absent, i.e. D = Km
d = Ka = 0;

(13) then reduces to γ̂(s, τ) = exp(−s′τ), the inversion of which yields advection with
decay, i.e. γ(t, τ) = exp(−λt) δ(t− τ).

In the absence of matrix diffusion (D = 0), sorption is possible in the fracture only.
If sorption is sufficiently fast (equilibrium) with αf →∞, Gf = s′Ka, and (13) reduces
to

γ̂(s, τ; β) = exp
(−s′τ− s′βKa

)
. (16)

Inversion of (16) yields retarded advection with decay

γ(t, τ; β) = exp(−λt) δ(t− τ−Kaβ). (17)

If sorption in the fracture is kinetically controlled, i.e. αf is finite, then

γ̂(s, τ; β) = exp
[−s′τ− β Gf(s′)], (18)

the inversion of which yields

γ(t, τ; β) = e−αfKaβ−λtδ(t−τ)+α2
fKaβ exp{−αf[Kaβ+(t−τ)]−λt} Ĩ1[α

2
fKaβ(t−τ)], (19)

where Ĩ1(Z) ≡ I1(2Z
1/2)/Z1/2 with I1 being the modified Bessel function of the first

kind of order one. A model analogous to (19) with Kaβ → τKd is common for
describing sorption in aquifers and soils (e.g. Cvetkovic & Dagan 1994; Destouni &
Cvetkovic 1991).

If both diffusion and sorption (in the rock matrix and on fracture surfaces) take
place, and equilibrium prevails both in the fracture and matrix, i.e. αm, αf → ∞, we
have

γ̂(s, τ; β) = exp
[−s′ (τ+ βKa)− β θ (DRm s

′)1/2
]
. (20)

Inversion of (20) yields

γ(t, τ; β) =
H(t− τ) β θ (DRm)1/2

2π1/2(t− τ− βKa)3/2
exp

[ −β2 θ2 DRm

4(t− τ− βKa)
− λt

]
, (21)

where H(·) is the Heaviside step function, and Rm ≡ 1 +Km
d is the retardation factor

in the rock matrix.
If equilibrium prevails in the rock matrix only (αm → ∞), then Gm = s′ (1 +Km

d ) ≡
s′ Rm, and

γ̂(s, τ; β) = exp
[−s′τ− βGf(s′)− β θ (DRm s

′)1/2
]
. (22)

Inversion of (22) yields a convolution integral between (19) and (21).
For cases where γ̂ cannot be inverted analytically, we can in principle reconstruct

γ by means of temporal moments. Temporal moments of order k for pulse injection,
for instance, are defined by

mk(τ) ≡
∫ ∞

0

tk q dt = ∆M

∫ ∞
0

tk γ dt = ∆M (−1)k
∂k γ̂

∂sk

∣∣∣∣
s=0

, (23)

where ∆M is the injected tracer mass and γ̂ is defined in (22). Central temporal
moments are readily computed using mk (23).

5. Probabilistic solutions
Due to random variations of the half-aperture, b(x), the fluid velocity V is random,

and consequently the Lagrangian quantities integrated over the flow path, such as τ



344 V. Cvetkovic, J. O. Selroos and H. Cheng

and β, are random; the solution γ is then also random and needs to be quantified
statistically. In the cases where γ̂ cannot be inverted, the statistics of γ can in principle
be reconstructed from the statistics of the temporal moments (23). In the general
case with γ̂ (10), the resulting moments would depend on τ, and on integrals over
the τ-domain, that are random. In the case where γ̂ is given by (13), mk (23) depends
on τ and β, whereby the statistics of the temporal moments can be directly related
to the statistics of β and τ. In § 7 we illustrate the computation of the PDF of the
zero-order temporal moment.

In the cases where a closed-form analytical expression for γ is available, tracer
breakthrough (or discharge) at location x with advective residence time τ(x) is
quantified by γ, conditioned on the random variables τ and β. We can then compute
the mean and variance of γ by using the joint PDF of τ and β.

Let fτβ ≡ f(τ, β) denote a joint probability density function (PDF) for τ, β, at the
control plane. The expected γ is then evaluated by

〈γ〉 =

∫
γ f(γ) dγ =

∫ ∞
0

∫ ∞
0

γ(t, τ; β) f(τ, β; x) dτ dβ. (24)

The variance is defined as σ2
γ ≡ 〈γ2〉 − 〈γ〉2, where 〈γ2〉 is evaluated by

〈γ2〉 =

∫
γ2 f(γ) dγ =

∫ ∞
0

∫ ∞
0

γ2(t, τ; β) f(τ, β; x) dτ dβ. (25)

Similarly, we may compute higher-order moments of γ. The expected tracer discharge
〈q〉 and the variance of q, 〈q2〉 − 〈q〉2, are then proportional to 〈γ〉 and 〈γ2〉 − 〈γ〉2,
respectively, in view of (9).

6. Statistics of τ and β
In § 4 we found that τ and β are the two fundamental (Lagrangian) random variables

for advection and mass transfer processes in fractures. The probabilistic solutions of
the transport problem require knowledge of the joint PDF f(τ, β), as a function of the
Eulerian flow statistics. In the following, we first discuss the statistics of the RSF b(x).
Then we derive the first few moments of τ, β as functions of the flow statistics, based
on first-order expansions, and compare them to results of Monte Carlo simulations.

6.1. Aperture variations

Detailed analysis of single fractures have been performed under laboratory conditions.
Different methods for analysing the void space are available; e.g. surface topography,
resin injection, and casting methods. Hakami (1995) and Hakami & Larsson (1996)
have studied two different type of fractures, a minor fault (highly conductive single
fracture) and a well mated joint, respectively, from the Äspö Hard Rock Laboratory
in Sweden using injection/photograph techniques. Their results, as well as those of
a few other studies, indicate that the spatially variable geometric aperture may be
described by a univariate log-normal distribution combined with a two-point spatial
correlation function (e.g. exponential variogram) (Hakami 1995; Hakami & Larsson
1996); other types of statistical models are not excluded, however, since experimental
data are sparse.

For illustrative purposes, we assume the half-aperture b as log-normally distributed
with a exponential correlation structure, i.e.

b(x) = bG eY (x), CY (r) = σ2
Y exp(−r/IY ), (26)
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where r ≡| r | is the separation distance, bG is the geometric mean, Y is a normally
distributed RSF of zero mean and IY is the (isotropic) integral scale of Y .

6.2. Analytical results

Using first-order expansions, expressions for the first two moments of τ and β, as well
as the joint moment of τ and β, are derived in Appendix C.

The mean of τ and β are at first-order

〈τ〉 = τ0

x

IY
, 〈β〉 = β0

x

IY
=
τ0

bG

x

IY
=
〈τ〉
bG
, (27)

where the normalization constants τ0 and β0 are given in (C 6) of Appendix C.
The variances and the joint moment of τ and β are (Appendix C)

σ2
τ

τ2
0

= 8x′ − 7 ln x′ + 2e−x
′
+ 7Ei(−x′) + 3

[
(1 + x′)e−x′ − 1

x′2

]
− 1

2
− 7E,

σ2
β

β2
0

= 18x′ − 11 ln x′ + 8e−x
′
+ 11Ei(−x′) + 3

[
(1 + x′)e−x′ − 1

x′2

]
− 13

2
− 11E,

στβ

τ0β0

= 12x′ − 9 ln x′ + 4e−x
′
+ 9Ei(−x′) + 3

[
(1 + x′)e−x′ − 1

x′2

]
− 5

2
− 9E,


(28)

where x′ ≡ x/IY , and E = 0.577 . . . is the Euler constant.

6.3. Simulation results

The aperture 2b controls on the one side the flow field, and on the other side diffusive
mass transfer between the fracture and rock matrix. For a given hydraulic gradient
applied on the fracture, the two-dimensional fluid velocity field is a RSF. The solution
of the flow field as described in Appendix A provides the basis for solving the reactive
transport problem.

We simulate advective transport in a statistically isotropic heterogeneous fracture
with (26) applicable. A constant head is assumed at the boundaries x/IY = −6 and
x/IY = 18, and no-flow condition is assumed at y/IY = −9 and y/IY = 9. The
simulation domain is discretized into 96× 72 blocks, with 4 blocks per integral scale.
To minimize the effects of boundaries (Rubin & Dagan 1988, 1989), an inner domain
is defined within which the particle transport is investigated. The RSF Y is generated
using a recently developed method (Bellin & Rubin 1996), and the flow equation
(A 1) (Appendix A) is solved by a finite difference method.

A series of Monte Carlo simulations is performed for different values of σY . A
typical streamline field for σY = 0.3 is shown in figure 2(a). The streamlines tend
to converge into dominant flow paths. This tendency is even more pronounced in
figure 2(b) for σY = 0.5 where a few major (‘preferential’) flow paths account for most
of the fluid flow. This is qualitatively consistent with results from field experiments
which indicate that flow in fractures is often ‘channellized’, i.e. relatively small sections
of the fracture provide for most of the flow (e.g. Neretnieks 1993). Similar features
have been observed in numerical simulations of flow in single fractures with variable
aperture (e.g. Moreno et al. 1988; Tsang & Tsang 1989) as well as in two-dimensional,
strongly heterogeneous aquifers (e.g. Cvetkovic, Cheng & Wen 1996).

Once the random flow field is established, a single tracer particle is injected into
the domain at the origin (i.e. ax = ay = 0) and is tracked in each realization. The
quantities τ, Vx, and b are computed along a flow path at different cross-sections
(x) of the flow domain in each realization. The statistics of β, τ, are calculated as
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(a) (b)

Figure 2. A typical realization of a simulated streamline field in a single fracture for:
(a) σY = 0.3, and (b) σY = 0.5.

functions of x/IY . The number of realizations essentially depends on the magnitude of
σY , and is between 1000 and 6000. For comparative purposes, we assume τ and β to be
log-normally distributed, and use the analytical model (C 10)–(C 11) of Appendix C.

The simulated and analytical expected values of ln τ and ln β are compared in
figures 3(a) and 3(b), respectively. First-order expressions for 〈ln τ〉 and 〈ln β〉 do
not depend on σY . The discrepancy between the simulated and analytical values
seems to decrease with distance (figure 3a,b). The arithmetic mean of β, 〈β〉, (which
is not shown in the figures but the simulated values can be closely estimated from
figures 3(b) and 3(d) by assuming a log-normal distribution for β) is about 25%
larger for σY = 0.5 than for σY = 0.1. This implies that for a single particle, diffusion
into the rock matrix is in a statistical sense enhanced by increasing variability of the
fracture aperture.

The log-variances for τ and β, σ2
ln τ and σ2

ln β , obtained from simulations, are
illustrated and compared to analytical results in figures 3(c) and 3(d), respectively. A
strong dependence of both σ2

ln τ and σ2
ln β on the aperture variability is apparent. The

analytical first-order σ2
ln τ is relatively close to the simulated values for all three values

of σY (figure 3c). Since for x→ ∞, 〈τ〉 ∼ x and σ2
τ ∼ x, and similarly for β, σ2

ln τ and
σ2

ln β tend to zero asymptotically.
The correlation coefficient, ρ ≡ σln τ ln β/(σln τσln β) is illustrated in figure 3(e). The

first-order analytical correlation coefficient ρ obtained from (28), (C 10) and (C 11)
is essentially 1.0. Simulated ρ varies relatively little with distance, increasing to an
asymptotic value that ranges from approximately 0.88 to 0.98; larger σY yields smaller
asymptotic values of ρ.

The relatively strong correlation between τ and β is a consequence of their strong
dependence on the fracture aperture, b, suggesting an approximate deterministic
relationship between τ and β. In figure 4 we plot log(τ/τ0) vs. log(β/β0) covering the
range of values that has been observed in simulations. The data are approximated
by a straight line, indicating a power-law dependence, with the exponent of 3

2
, i.e.

approximately β ∼ τ3/2. The particular slope of 3
2

in figure 4 is an artifact of the ‘cubic
law’. In fact, the zero-order approximation model which neglects the variability in b
and Ω yields τ = x/c0b

2
GΩ and τ = x/c0b

3
GΩ where Ω ≡ Ω̄ is the applied (uniform)
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Figure 3. Comparison of (τ, β) statistical moments obtained from first-order analysis (eqs. (27)–(28)
and eqs. (C 10)–(C 11)) and from numerical Monte Carlo simulations, as a function of the dimen-
sionless distance, and for different σY : (a) 〈ln(τ/τ0)〉; (b) 〈ln(β/β0)〉; (c) σ2

ln τ; (d) σ2
ln β; (e) correlation

coefficient ρ ≡ σln τ ln β/(σln τσln β).
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data points for σY = 0.1, σY = 0.3 and σY = 0.5,

with the linear best fit which gives β/β0 = 0.23(τ/τ0)3/2.

hydraulic gradient, and bG is the (uniform) half-aperture (Appendix C). Eliminating
bG from these two expressions yields

β =

(
x

c0 Ω

)−1/2

τ3/2 or
β

β0

=

(
x

IY

)−1/2 (
τ

τ0

)3/2

. (29)

The straight line in figure 4 yields β/β0 = 0.23 (τ/τ0)
3/2; the factor 0.23 is closely

approximated by (x/IY )−1/2 = 0.29 in (29). This indicates that although the flow
dynamics as described by Reynolds lubrication equation (A 1) (Appendix A) strongly
influences variability in τ and β, it influences the relationship between τ and β less.
If an alternative flow model is used which deviates from the cubic law, or a more
general statistical model for Y is considered, then the slope in figure 4 needs to be
re-evaluated.

7. Illustration example: CDF for tracer mass recovery
In § 4–5 we have solved the transport problem, explicitly accounting for the hetero-

geneity in the fracture aperture which directly controls advection and diffusion into
the rock matrix, and thereby indirectly controls sorption in the matrix. In this Section
we shall illustrate the effect of aperture variability on tracer transport, focusing on
diffusive mass transfer by neglecting surface sorption (Ka = 0).

A typical problem in long-term assessment of tracer transport is to quantify how
much of the tracer mass which enters fractured rock is eventually discharged from
the rock. Here we solve this problem for a single fracture.

In the absence of decay, the mass recovered from a fracture is equivalent to the
mass released into the fracture. However, in the case where decay is non-zero, the
recovered mass will vary depending on the coupled processes of advection, diffusion
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Figure 5. Surface plot of the probability Prob
{
ϑ < t1/2

}
in the log-parameter space logτ∗G,logβ∗G,

at x/IY = 12 for σY = 0.5.

and sorption. Moreover, the mass recovered will vary in a random manner. We wish
to illustrate the effect of aperture variability on the normalized zero-order temporal
moment, µ ≡ m0/∆M, where m0 is computed from (23). µ quantifies the fractional
mass recovery, where µ = 1 in the absence of decay (i.e. for λ = 0), otherwise µ < 1.
The specific case we shall illustrate is for γ̂ (22) (with Ka = 0) whereby

µ = exp
[− (τ+Ka β) λ− β θ (DRmλ)

1/2
]
. (30)

The PDF of µ (30) is evaluated as

f(µ) =
1

µ

∫ − ln µ

0

fτ∗β∗
(
τ∗,− ln µ− τ∗) dτ∗. (31)

where dimensionless τ and β are here defined as τ∗ ≡ λτ and β∗ ≡ βθ (DRmλ)
1/2. Based

on the moments of τ and β which are determined from simulations or analytically,
we assume for illustrative purposes a log-normal joint PDF fτβ , and evaluate f(µ)
from (31). Note that for τ and β log-normal, the dimensionless geometric means are
defined as τ∗G ≡ λτG and β∗G ≡ βGθ (DRmλ)

1/2. In our following calculations, we shall
use the geometric means τG and βG, the log-variances σ2

ln τ and σ2
ln β , as well as the

cross-covariance σln τ ln β , obtained from simulations at x/IY = 12 (figure 3c–e).
From f(µ) (31), the CDF is

∫ µ
0
f(µ′)dµ′. The probability that µ > 0.5 is quantified

by Prob {µ > 0.5} = 1 − ∫ 1/2

0
f(µ′)dµ′. The subparticle residence time in the system,

ϑ, will depend on the combined effect of advection and mass transfer reactions. The
significance of Prob {µ > 0.5} is in that it is equivalent to the probability of subparticle
residence time in the fracture–rock matrix system relative to tracer half-life, i.e. we
can write Prob {µ > 0.5} = Prob

{
ϑ < t1/2

}
, where t1/2 denotes half-life of the tracer.
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In figure 5, Prob
{
ϑ < t1/2

}
is presented as a surface plot in the dimensionless log-

parameter space logτ∗G, logβ∗G, for low and high variability in the fracture aperture. The
front between the low and high probability values is dispersed (figure 6), compared
to a sharp front between regions of Prob

{
ϑ < t1/2

}
= 0 and Prob

{
ϑ < t1/2

}
= 1 for

σY = 0 where τ and β are specified values. The general pattern of figure 6 reflects the
fact that stronger decay and mass transfer result in greater mass loss and hence in
greater values of Prob

{
ϑ < t1/2

}
, and vice versa for weaker decay and mass transfer.

8. Summary
A Lagrangian probabilistic model for reactive tracer transport in single rock

fractures has been developed. The mass transfer reactions are diffusion into the rock
matrix, sorption on fracture surfaces and/or infill (gauge) material, and sorption in
the rock matrix. The model relates diffusive mass transfer to flow dynamics; hence,
it generalizes on the one side models for non-reactive tracer transport based on
the dynamics of fluid flow (e.g. Moreno et al. 1988; Tsang & Tsang 1989), and on
the other side models for reactive transport where flow dynamics is not accounted
for (e.g. Neretnieks et al. 1982; Neretnieks 1983; Moreno et al. 1985; Wels et al.
1994; Cvetkovic 1991). The proposed transport model rests on two key assumptions:
diffusion into the rock matrix is one-dimensional, in the direction orthogonal to the
fracture plane, and only advective transport is considered in the fracture.

A general Lagrangian deterministic solution of the transport problem is obtained in
the Laplace domain and is given in (10). From the solution γ̂ (10), temporal moments
can be computed and analysed statistically. For the case where Kf

d = Ka/b and Ka

is uniform, we identified a single Lagrangian random variable, β, which controls
the diffusive mass transfer into the rock matrix, as well as surface sorption. The
probabilistic solutions are obtained based on the statistics of τ and β. In particular,
the mean and variance of γ are evaluated in (24)–(25), using the joint PDF fτβ . The
PDF of the temporal moments can also be computed from the joint PDF fτβ . For
quantifying the statistics of τ and β we used the Reynolds lubrication equation (A 1),
i.e. we assumed the ‘cubic law’ to be applicable locally. However, our general result is
not restricted by the ‘cubic law’ model.

Expressions for the first few moments of τ and β have been derived using first-
order expansions, and compared to results of Monte Carlo simulations (figure 3).
Analytical expressions appear robust for the range of variability in the fracture
aperture considered. Simulation results indicate that 〈β〉 increases with increasing
σY , implying that diffusion into the rock matrix is in a statistical sense enhanced by
increasing fracture heterogeneity. In view of its definition, β has a stronger dependence
on the aperture in comparison to τ, and hence is more influenced by the variability in b.

We evaluated the probability of tracer residence time, ϑ, in the fracture–rock system,
relative to tracer half-life, t1/2. The results illustrate the dispersion of Prob

{
ϑ < t1/2

}
in the dimensionless parameter space which is a consequence of spatial variability
in fracture aperture (figure 5). If heterogeneity is not accounted for, the transition
between regions with probabilities 1 and 0 for ϑ < t1/2, is a sharp front.

Simulation results suggest a deterministic relationship between β and τ (figure 4).
A general power law is β ∼ τm. We found m = 3

2
which is an artifact of the cubic

law and is strictly applicable only for the conditions considered in the simulations.
A zero-order approximation of the cubic law (which in effect neglects variability in
the flow), also yields m = 3

2
. Thus flow dynamics has relatively small impact on the

relationship between τ and β, although it strongly influences the variability of τ and
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β (figure 3). The framework presented can be used for identifying the exponent m
under flow conditions more general than those considered here.

The possibility of using a deterministic relationship β ∼ τm would have important
practical advantages in site characterization, as well as in safety assessment studies,
for waste repositories in crystalline rocks. In particular, a deterministic relationship
between τ and β would imply that the estimation of β in the field can be based
entirely on the hydraulic and non-reactive transport properties of rock fractures,
hence minimizing the need for time-consuming and costly reactive tracer tests. More
comprehensive studies are required, however, before a model of the type β ∼ τm can
be used with confidence in field applications. Such studies (analytical and/or based
on simulations similar to the ones presented here), should include one or several
generalizations, such as modifying the flow model to account for deviations from the
cubic law, implementing different statistical models for b, considering larger variances
than σY = 0.5, testing alternative boundary conditions for flow in fractures (e.g.
radially converging and dipole configurations), etc.

The mean and variance of tracer discharge, (24)–(25) with (9), were derived by
considering a single flow path through a fracture. A single flow path implies a source
that is small compared to the heterogeneity integral scale. In applications, however, the
source size will vary. Thus an important question for applications is how our results
relate to tracer sources of finite extent. In order to quantify 〈q〉 that is consistent
with the observable q in single realizations for a finite source, we require analysis
of ‘relative’ dispersion for reactive solute flux (Selroos 1995; Andricevic & Cvetkovic
1998). Details of a relative dispersion formulation of reactive transport in aquifers for
the tracer mass flux are given in Andricevic & Cvetkovic (1998); this methodology
can in principle be extended to reactive transport in fractures by incorporating the
variability in β.

Transport problems in fractured rock are generally on large scales. For performance
and safety assessment of waste repositories, for instance, the length scales from
canisters to the biosphere are typically of the order of 103 m. By comparison, the
scale of a typical tracer source, for example, from one or several failed canisters, is
percieved on the order of 100 m, or less. Under such conditions, the potential transport
path from a failed canister to the biosphere may be considered as a single advection
flow path, transecting a number of rock fractures. τ (7) and β (12) are then integral,
random quantities from the canister to the biosphere. In order for the present results
to be applicable in safety and performance assessment studies, transport in several
fractures has to be serially connected; an analytical model for a network of fractures
has recently been developed (Painter, Cvetkovic & Selroos 1998).

The authors wish to thank G. Dagan at Tel-Aviv University, A. Hautojärvi at the
Technical Research Centre of Finland, L. Moreno and I. Neretnieks at the Royal
Institute of Technology in Stockholm, for their helpful comments and suggestions
which improved the original version of the manuscript. The support for this work
has been provided by the Swedish Nuclear Fuel and Waste Management Co. (SKB)
within the Tracer Retention Understanding Experiment (TRUE) programme, Äspö
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Appendix A. Flow in rock fractures
The aperture 2b is a geometrical parameter that in principle can be measured in

a fracture plane. In an appropriately designed experiment, the flow rate through a
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fracture and the corresponding velocity can also be measured. Such experiments have
been conducted in the laboratory, and results indicate that the fluid flow rate in
fractures may under certain conditions be approximated as proportional to b3 (‘cubic
law’), whereby the fluid velocity is proportional to b2.

The governing equations for flow of an incompressible viscous fluid in a fracture are
the Navier–Stokes and continuity equations. If steady-state conditions are assumed in
a fracture bounded by two perfectly parallel and smooth plates, the flow equation is
simplified as µ∇2u = ∇P where u is the fluid velocity, P = p+ ρgz, p is the pressure,
g is gravity acting in the vertical direction, z is the vertical coordinate and µ is the
fluid viscosity (e.g. Batchelor 1967). Integration of this equation with zero velocity
at fracture surfaces yields a parabolic velocity profile for the x-component of the
velocity, ux, proportional to the pressure gradient.

The volumetric flow rate, Q [L3T−1] is obtained by integrating the velocity over
the fracture aperture, as Q = 2 |∇P |wb3/3µ where w is the width of the fracture;
this expression is consistent with Darcy’s law for flow in porous media. Comparison
with Darcy’s law indicates that b2/3 corresponds to the permeability. From the
permeability, the transmissivity [L2T−1] is 2ρgb3/3µ, commonly referred to as the
‘cubic law’. Averaging ux(x, y, z) and uy(x, y, z) over z, we obtain the components of
the two-dimensional velocity vector V (x, y), Vx and Vy , respectively.

By assuming that the cubic law is applicable locally, i.e. over an element dx × dy
(figure 1), and invoking mass balance, the governing equation for P is obtained in
the form (Reynolds 1886; Zimmerman & Bodvarsson 1996)

∂

∂x

[
b3 (x, y)

∂P

∂x

]
+

∂

∂y

[
b3 (x, y)

∂P

∂y

]
= 0. (A 1)

It can be shown that the validity of (A 1) for flow in spatially variable fractures requires
a more stringent condition on the flow rate as compared to flow between smooth,
parallel plates (Zimmerman & Bodvarsson 1996). In addition to the restriction on the
flow rate, some restrictions on the spatial rate of change of the aperture profile are
required for (A 1) to be applicable (Zimmerman & Bodvarsson 1996). Equation (A 1),
referred to as Reynolds lubrication equation, can be used for computing the pressure
(head) field in a spatially variable fracture for specified boundary conditions. The fluid
velocity, V , is then proportional to the local pressure gradient and b2(x, y). Equation
(A 1) has been used in several simulation studies of flow and transport in single
fractures (e.g. Moreno et al. 1988; Tsang & Tsang 1989), and is also used in this study.

Appendix B. Laplace solution
Laplace transform of the system (6) yields for zero initial condition

s Ĉ +
∂Ĉ

∂τ
=
θ D

b(τ)

∂Ĉm

∂z

∣∣∣∣
z=0

− λ Ĉ − αf [Kf
d (τ) Ĉ − Ĉ ′], (B 1a)

s Ĉm = D
∂2Ĉm

∂z2
− αm (Km

d Ĉm − Ĉ ′m)− λ Ĉm, (B 1b)

s Ĉ ′ = αf [Kf
d (τ) Ĉ − Ĉ ′]− λ Ĉ ′, (B 1c)

s Ĉ ′m = αm (Km
d Ĉm − Ĉ ′m)− λ Ĉ ′m. (B 1d)
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Using (B 1c) and (B 1d) and substituting for Ĉ ′ and Ĉ ′m in (B 1a) and (B 1b), we get

dĈ

dτ
=

θD

b(τ)

∂Ĉm

∂z

∣∣∣∣
z=0

− (λ+ s)

[
1 +

αf K
f
d

s+ λ+ αf

]
Ĉ, (B 2a)

∂2Ĉm

∂z2
=
s+ λ

D
Ĉm +

(s+ λ) αm K
m
d

D (s+ λ+ αm)
Ĉm. (B 2b)

The general solution of (B 2b) is

Ĉm = C1 exp
[−z (D−1 Gm(s′))1/2

]
+ C2 exp

[
z (D−1 Gm(s′))1/2

]
, (B 3)

where C1 and C2 are constants (with respect to z) to be determined from boundary
conditions, and Gm is defined in (11).

For zero flux boundary condition (∂Cm/∂z = 0) at z = ζ, we get

C1 =
Ĉ exp

[
2 ζ (D−1 Gm(s′))1/2

]
1 + exp

[
2 ζ (D−1 Gm(s′))1/2

] , (B 4a)

C2 = Ĉ − C1 =
Ĉ

1 + exp
[
2 ζ (D−1 Gm(s′))1/2

] . (B 4b)

Thus

∂Ĉm

∂z

∣∣∣∣
z=0

= −Ĉ A(s′) (D−1 Gm(s′))1/2, (B 5)

where A is defined in (11).
For zero concentration boundary condition (Cm = 0) at z = ζ, we get following

similar steps as above

∂Ĉm

∂z

∣∣∣∣
z=0

= −Ĉ A−1(s′) (D−1 Gm(s′))1/2. (B 6)

Using (B 5) in (B 2) we get

dĈ

dτ
= −Ĉ [s′ τ+ b−1(τ)A(s′) θ (DGm(s′))1/2 + b−1(τ)Gf(s

′, τ)
]
, (B 7)

and similarly for zero concentration, where A is replaced by A−1. Integration of (B 7)
yields (10).

Appendix C. First-order results
As a first step, we approximate the Lagrangian quantities by the Eulerian ones, for

instance,

Vx{x, η(x)]} ≈ Vx(x, 0), (C 1)

where the mean hydraulic gradient, 〈Ω〉 is assumed parallel to x, i.e. 〈Ω〉(Ω̄, 0).
We then write

τ(x) =

∫ x

0

dx′

Vx(x′, 0)
, β(x) =

∫ x

0

dx′

Vx(x′, 0)b(x′, 0)
. (C 2)

The expression for V based on the cubic law is

V (x, y) = c0 b
2(x, y)Ω(x, y), (C 3)
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where c0 [L−1 T−1] is a known constant. The approximate Lagrangian velocity is

Vx(x, 0) = c0 b
2(x, 0)Ωx(x, 0). (C 4)

For b log-normally distributed we approximate (C 2) using (C 4), to obtain at
first-order

τ(x) =
τ0

IY

∫ x

0

e2Y (1 + $)−1 dx′ ≈ τ0

IY

∫ x

0

(1− 2Y − $) dx′,

β(x) =
β0

IY

∫ x

0

e3Y (1 + $)−1 dx′ ≈ β0

IY

∫ x

0

(1− 3Y − $) dx′,

 (C 5)

where $ ≡ Ω′x/Ω̄ = (Ωx − Ω̄)/Ω̄, 〈$〉 = 0, and the normalization parameters are
defined by

τ0 ≡ IY

c0 b
2
G Ω̄

, β0 ≡ τ0

bG
=

IY

c0 b
3
G Ω̄

. (C 6)

Note that a zero-order expansion yields τ/τ0 = x/IY and β/β0 = x/IY ; this is
equivalent to the flow model where fracture aperture is approximated as uniform.

The first-order expressions for the moments σ2
τ , σ

2
β and στβ are

σ2
τ ≡ 〈τ2〉 − 〈τ〉2 = 2

(
τ0

IY

)2 ∫ x

0

(x− ξ) (4CY + 4CY$ + C$ ) dξ,

σ2
β ≡ 〈β2〉 − 〈β〉2 = 2

(
β0

IY

)2 ∫ x

0

(x− ξ) (9CY + 6CY$ + C$ ) dξ,

στβ ≡ 〈τβ〉 − 〈τ〉〈β〉 = 2
τ0 β0

I2
Y

∫ x

0

(x− ξ) (6CY + 5CY$ + C$ ) dξ,


(C 7)

where

CY$ ≡ 〈Y $〉, C$ ≡ 〈$$ ′〉. (C 8)

We use the methodology of Dagan (1989) to obtain

CY$ (r′) = σ2
Y

[
−e−r

′
(

1

r′2
+

1

r

′
+ 1

)
+

1

r′2

]
,

C$ (r′) = σ2
Y

[
e−r

′
(

1 +
2

r′
+

5

r′2
+

9

r′3
+

9

r′4

)
− 1

2r′2
− 9

r′2

]
,

 (C 9)

where r′ ≡ r/IY . Substituting (C 9) into (C 7) and integrating yields (28).
The simulation results are conveniently expressed as statistics of ln τ and ln β.

For comparison between simulation and analytical results, we assume τ and β as
log-normally distributed. The log-moments are then computed as

〈ln τ〉 = ln〈τ〉 − 1
2
σ2

ln τ, σ2
ln τ ≡ 〈(ln τ)2〉 − 〈ln τ〉2 = ln

[(
στ

〈τ〉
)2

+ 1

]
, (C 10)

and similarly for β; the joint log-moment is

σln τ ln β ≡ 〈ln β ln τ〉 − 〈ln β〉〈ln τ〉 = ln〈τβ〉 − 〈ln τ〉 − 〈ln β〉 − 1
2

(
σ2

ln τ + σ2
ln β

)
(C 11)

where 〈τ〉, 〈β〉, σ2
τ , σ

2
β and στβ are given in (27) and (28).
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